Errington Primary School - Calculation Policy

Introduction

This document outlines the calculation policy implemented and followed at Errington Primary School. Mathematics is a tool for everyday life. It is a whole network of concepts and relationships which provide a way of viewing and making sense of the world. It is used to analyse and communicate information and ideas and to tackle a range of practical tasks and real-life problems.

Our calculation policy at Errington Primary school is designed to support the teaching of the National Curriculum (2014); to ensure the children are given the opportunity to develop their mathematical skills in all aspects of mathematics, ensuring progression is clear throughout each year group.

Concrete, Pictorial and Abstract (CPA) approach

At Errington Primary School we recognise that the CPA approach is highly effective in the teaching of Maths to develop conceptual understanding. This approach is recommended to deliver a mastery approach to teaching mathematics. True mastery aims to develop all children's understanding at the same pace. As much as possible, children should access the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task or learning outcome.

Objects, pictures, words, numbers and symbols are everywhere. The mastery approach incorporates all of these to help children explore and demonstrate mathematical ideas, enrich their learning experience and deepen understanding. Together, these elements help cement knowledge so pupils truly understand what they have learnt.

Concrete - The doing stage	Pictorial - The seeing stage	Abstract - The symbolic stage		
There is a clear focus on the use of	Once a child has mastered the concrete			
manipulatives and visual images to support				
stage, they can now relate them to				
understanding. Each new concept or				
calculation strategy will be introduced using				
representations, such as diagrams or a				
appropriate manipulatives, giving the				
children a clear picture of the the problem.				
mathematical concept, they are learning.			\quad	The abstract stage should be completed
:---				
alongside the concrete and pictorial to				
ensure children have a visual and deeper				
understanding of the mathematical				
concept. Only once children have mastered				
the concrete and pictorial alongside the				
abstract should concrete manipulatives and				
pictorial representations be removed.				

Addition

Add 1-digit
Addend
numbers
within 10 .
Number stories will
be used to link
learning to real life
situations to develop
understanding before
abstract
representations are
given.

| Add by |
| :--- | :--- |
| counting on |
| The big number goes |
| in your head and |
| count on with your |
| fingers. |

Add 1-digit and 2-digit numbers	 When adding a 2 -digit number to a 1-digit number, children should be encouraged to count on from the laager number. They should be taught that addition can be done in any order but that it is quicker and easier to count on from the larger number. Children can use place value counters and dienes to add numbers on a place value chart. They should be encouraged to use known bonds to support adding a 1-digit number to a 2-digit number.	Children can draw pictures when adding. For example, I have 41 crayons and find 6 more. How many do I have? Children can draw the additional crayons. This will highlight that there are 4 tens and 7 ones altogether. Children should use number squares and draw the jumps from the larger number.	Abstract concepts should be shown alongside the pictorial and concrete. Children should draw jumps on number lines and again be encouraged to use known bonds to improve efficiency and accuracy.
Use known bonds to add tens.	If $4+3=7$ then $40+30=70$	(III) (III) Children can draw pictures to represent the numbers. They should be encouraged to use the known bond. If $4+$ $3=7$ then $40+30=70$. They can then count in tens to show this.	$7_{4+3=\square} \begin{aligned} & \text { If } 4+3=7 \\ & 40+30=- \end{aligned}$
Adding two 2digit numbers	Children should use dienes and place value counters to add two 2-digit numbers. In the early stages this should be done alongside a portioned column method then moving onto the formal column method. Children first partition the numbers into tens and ones and represent these on the place value grid. Children first add the ones and exchange ten ones for one 10 if needed. This is place under the answer box. The ones column is then added together including the ten below the answer box.	Children can draw a pictorial representation of the columns and dienes or place value counters to further support their learning and understanding.	
Adding 3-digit numbers.		 Children can draw the dienes or place value counters to support	265 Children should use the concrete method alongside the abstract to support understanding before moving onto the abstract method alone. +164 429

	Base 10 and counters are to be used when adding 3-digit numbers. Ensure children write their calculation along side so they see the connections.	their learning. Pictures can be used to support understanding.	
Adding 4-digit numbers and above.	Always begin with showing the concrete method along side the abstract to ensure understanding especially where exchanges occur.	Children can draw counters in a place value table.	$\begin{array}{r} 1 \\ 1 \end{array} 378 \quad 8 \quad 1,378+\mathbf{2 , 1 4 8 = 3 , 5 2 6}$
Adding tenths	 Link measure with addition of tenths. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together?	6 tenths add 2 tenths. Children can draw a bar model to represent the tenths. Children can use a number line as shown above and add the jumps needed.	$\begin{aligned} & 0.6+0.2 \\ & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \end{aligned}$ When showing the abstract number sentence, a link can be made with fractions.
Adding decimals	 When adding decimals place value counters should be used. Children should have a good understanding of adding money and coins can be used to support when adding numbers with 2-decimal places.	Children can draw the place value counters on a grid to support their learning.	

Subtraction

$7-2=5$

Minuend Subtrahend Difference

Key Vocabulary: take away, less than, the difference, subtract, minus, fewer, decrease, reduce Exchange - Change a number or expression for another of an equal value.
Minuend - A quantity or number from which another is subtracted.
Reduction - Subtraction as take away.
Difference - the numeral difference between two numbers found by comparing the quantity.
Subtrahend - A number to be subtracted from another.

	Concrete	Pictorial	Abstract
Subtract 1digit numbers from 10 Children need to find the difference and reduction within numbers.	Lots of physical objects should be used to show how objects can be taken away. Number stories should be told alongside this using a range of vocabulary. Tens frames and bead strings are useful to find reductions (how many left). Cubes and bar models are useful when finding the difference (how many more).	QQ Children can draw circles or pictures to help them subtract. 7-3 = Children draw 7 circles and then cross out 3 . 00000000 $00000 \stackrel{?}{\rightleftarrows}$ When finding the difference bar models are useful to draw as children can see the difference clearly.	$7-3=4$ Abstract representations should be introduced alongside pictorial and concrete representations. Part whole models should be used with objects first. Children start with 7 counters as this is the whole. They place 4 in one part. There is 3 left which tells them 3 is the other part. This can also be used to solve missing problems. 7 - \qquad $=4$ or $4+$ \qquad $=7$
Subtracting 1digit and 2digit numbers to 20.	When beginning to subtract from a 2-digit number it is important to highlight that one ten is equal to ten ones. Children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Tens frames and straws are useful for this.	Children can draw circles and cross these out when subtracting. The relationship between number bonds should be pointed out. 6 is made up of 4 and 2. We can take away the 4 from 14 to give us ten and then the 2 from 10 to give us the answer.	$14-6=8$ Children should be shown abstract representations alongside the concrete and pictorial. Images can be drawn above the number line and these crossed out before children jump back on a number line. This will help them to understand further. Use number stories to help children what is happening when we subtract and find the difference.

Subtracting with decimals.	Children should use place value counters and coins when subtracting with decimal places. Place value is important and place value grids should be used.	 Children can draw the place value counters to support their learning once confident with using the place value counters.	4 5.43 -2.7 2.731 2 6 3 . 0 2 6 . Children should use the place value holder (0) when needed.

Multiplication

4 Multipl	Multiplicand Product	Key Vocabulary: double, times, multiplied by, the produce of, groups of, lots of, equal groups of, factor. Array - An ordered collection of objects in rows and columns. Commutative - Numbers can be multiplied in any order. Exchange - Change a number or expression for another of an equal value. Factor - A number that multiplies with another to make a product. Product - The result of multiplying one number by another.	
	Concrete	Pictorial	Abstract
Doubling		Double 4 is 8 Children should draw pictures to show doubling a number. $\square \square$	When doubling larger numbers, a partitioning method should be used. This should be done alongside concrete resources such as dienes.
Counting in multiples	(Children should count in multiples aloud. Patterns should be identified and children should be asked what they notice. Number squares should be used to highlight the patterns when counting in multiples. $\begin{aligned} & 246810 \ldots \\ & 51015 \quad 20 \quad 25 \ldots . \end{aligned}$
Repeated Addition Counting and making equal groups	Children will count groups of objects and add them together. I have \qquad lots of/equal groups of \qquad . I have \qquad altogether. In year 1 children should use concrete and pictorial representations and are not expected to record multiplication formally.	Children should be shown different real-life representations alongside the abstract repeated addition. Children can draw counters in groups and should be shown pictures of objects in groups.	Children should be shown the multiplication and repeated addition alongside the concrete or pictorial to support understanding. $\begin{aligned} & 5+5+5+5= \\ & 4 \times 5= \\ & 5 \times 4= \end{aligned}$ 4 lots of $5=$ 5 lots of 4=
Making Arrays	Children should create arrays using counters/objects. Children should write the matching number sentence along side the array. $4 \times 5=$ I have 4 groups of 5 . Children make a group of 5 at a time. Using the same counters, they solve $5 \times 4=$ to show that multiplication can be done in any order (commutative).	Children should draw circles to represent the arrays. $3 \times 4=$ or $4 \times 3=$ Children can count the circles to find the answer.	$\begin{aligned} & 3 \times 5= \\ & 5 \times 3= \\ & 3+3+3+3+3= \\ & 5+5+5= \end{aligned}$ Children should be shown that multiplication can be done in any order (communitive).

Sher
Sharing
objects into
groups.

Division with arrays	Link division to multiplication by creating arrays and thinking about the number sentences that can be created. E.g.: $\begin{array}{cl} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Divide 2digits by 1digit (no exchange)	Tens Ones 10 1 10 1 When dividng larger numbers children should use dienes and place value counters to enble them to split numbers into tens and ones. $48 \div 2=24$	Children can draw the dienes and place value counters and share these in the number of circles in which we are dividing by.	$48 \div 2=24$ Part whole models provide a written method that matches the concrete representation. This should always be done first using concrete materials with the abstract represented alonside to enable children to visualise and understand.
Division with exchange	 $52 \div 4=$ Children should start with the equipment outside of place value grid. First the children will share out the tens into 4 sections as they are sharing by 4 . They will see that they have 1 ten in each group and one ten left over. They would then exchange the ten into ten ones. They would then share the 12 ones evenly between the four rows. They can clearly see that 52 shared by 4 gives them 13 as each row has 13.	Tens Ones 0 000 0 000 0 000 0 000 0 Children can draw the place value counters or dienes onto a place value grid. First the child would split the place value grid into the amount we are dividing by. They would then share out the tens. As they have one left over, they would exchange this for ten ones and share these within the one's column. Children can see that 52 shared into 4 groups is 13 as they have one ten and 3 ones.	$52 \div 4=$ The part-whole model supports flexible partitioning. Starting with the concrete and moving to the abstract allows children to see how they number can be split easily to solve with mental method.
Division with remainders	$14 \div 3=$ Children begin in the early stages by sharing out objects in the number of groups we are dividing by.	Children can draw dots and group them to divide an amount and clearly show a remainder.	Children can jump forward on a number line than see how many more they need to jump to find the remainder. $53 \div 4=13 r 1$ $\begin{aligned} & 53=40+13 \\ & 40 \div 4=10 \\ & 13 \div 4=3 r 1 \end{aligned}$

	 $53 \div 4=13 r 1$ Children can use dienes or place value counters. Children should start with the equipment outside of the place value grid. This will help them to see that there will be a remainder due to it being left outside once all the others have been grouped.	Tens Ones 0 000 0 000 0 000 0 0 $53 \div 4=13 r 1$ Children can draw the place value counters or dienes to support their learning.	
Sharing as grouping Bus Stop Method (Short Division)	Make the dividend using place value counters and place on the place value chart. How many groups of 4 go into 4 tens? 1 group of 4 tens. How many groups of 4 go into 8 ones? 2 groups of 4 ones. Using this grouping method alongside the short division method helps children to understand why we exchange the one and what this looks like.	Children can easily draw the place value counters to support their learning.	1 3 4 5 $1_{2} 2$ The short division method should be completed alongside the concrete. This will show clearly the exchange and how the division is calculated. $4 \longdiv { 2 }$ $856 \div 4=$. Children first find out how many groups of 4 go into 8 which is 2 . This is $\begin{aligned} & 21 \\ & 4 \longdiv { 8 5 ^ { 1 } 6 } \end{aligned}$ placed above the hundreds. Next, we find out how many groups of 4 go 214 $4 \longdiv { 8 1 6 }$ into 5 which is 1 with 1 ten left over. The one goes above the tens and the one left over goes next to the ones. Finally, we find out how many groups of 4 go into 16 ones which
Divide multiple digits by 2digits (short division).	When children begin to divide upto 4-digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective.		 Children can write out multiples to support their calculations.

